Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Commun Biol ; 7(1): 462, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627534

RESUMO

Plant viruses evolves diverse strategies to overcome the limitations of their genomic capacity and express multiple proteins, despite the constraints imposed by the host translation system. Broad bean wilt virus 2 (BBWV2) is a widespread viral pathogen, causing severe damage to economically important crops. It is hypothesized that BBWV2 RNA2 possesses two alternative in-frame translation initiation codons, resulting in the production of two largely overlapping proteins, VP53 and VP37. In this study, we aim to investigate the expression and function of VP53, an N-terminally 128-amino-acid-extended form of the viral movement protein VP37, during BBWV2 infection. By engineering various recombinant and mutant constructs of BBWV2 RNA2, here we demonstrate that VP53 is indeed expressed during BBWV2 infection. We also provide evidence of the translation of the two overlapping proteins through ribosomal leaky scanning. Furthermore, our study highlights the indispensability of VP53 for successful systemic infection of BBWV2, as its removal results in the loss of virus infectivity. These insights into the translation mechanism and functional role of VP53 during BBWV2 infection significantly contribute to our understanding of the infection mechanisms employed by fabaviruses.


Assuntos
Fabavirus , Vírus de Plantas , Fabavirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus de Plantas/genética
2.
Theor Appl Genet ; 137(5): 97, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589740

RESUMO

KEY MESSAGE: Bulked segregant RNA seq of pools of pepper accessions that are susceptible or resistant to Broad bean wilt virus 2 identifies a gene that might confer resistance to this devastating pathogen. The single-stranded positive-sense RNA virus Broad bean wilt virus 2 (BBWV2) causes substantial damage to pepper (Capsicum annuum) cultivation. Here, we describe mapping the BBWV2 resistance locus bwvr using a F7:8 recombinant inbred line (RIL) population constructed by crossing the BBWV2-resistant pepper accession 'SNU-C' with the susceptible pepper accession 'ECW30R.' All F1 plants infected with the BBWV2 strain PAP1 were susceptible to the virus, and the RIL population showed a 1:1 ratio of resistance to susceptibility, indicating that this trait is controlled by a single recessive gene. To map bwvr, we performed bulked segregant RNA-seq (BSR-seq). We sequenced pools of resistant and susceptible lines from the RILs and aligned the reads to the high-quality 'Dempsey' reference genome to identify variants between the pools. This analysis identified 519,887 variants and selected the region from 245.9-250.8 Mb of the Dempsey reference genome as the quantitative trait locus region for bwvr. To finely map bwvr, we used newly designed high-resolution melting (HRM) and Kompetitive allele specific PCR (KASP) markers based on variants obtained from the BSR-seq reads and the PepperSNP16K array. Comparative analysis identified 11 SNU-C-specific SNPs within the bwvr locus. Using markers derived from these variants, we mapped the candidate bwvr locus to the region from 246.833-246.949 kb. SNU-C-specific variants clustered near DEM.v1.00035533 within the bwvr locus. DEM.v1.00035533 encodes the nitrate transporter NPF1.2 and contains a SNP within its 5' untranslated region. The bwvr locus, which contains four genes including DEM.v1.00035533, could represent a valuable resource for global pepper breeding programs.


Assuntos
Capsicum , Fabavirus , Mapeamento Cromossômico , RNA-Seq , Capsicum/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Resistência à Doença/genética , Doenças das Plantas/genética
3.
Arch Microbiol ; 206(2): 75, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261081

RESUMO

Patchouli (Pogostemon cablin), a highly valued medicinal plant, suffers significant economic losses following infection with Broad bean wilt virus 2 (BBWV-2) and Peanut stripe virus (PStV). In this study, a field-based isothermal technique called reverse transcription loop-mediated isothermal amplification (RT-LAMP) was established for an early and specific detection of BBWV-2 and PStV. The oligo primers were designed to target the coat protein genes of PStV and BBWV-2. The reaction conditions, such as temperature and time duration, were optimized to 65 °C for 60 min. The LAMP amplicons positive for PStV and BBWV-2 revealed characteristic ladder-type bands following agarose gel electrophoresis. Further, a colorimetric assay using a metal ion-based indicator (Hydroxy-naphthol blue, HNB) was conducted to visualize the amplified products with the naked eye, thus facilitating accessibility to field practices. The assay developed in this study was found to be virus specific, and was 100 times more sensitive than RT-PCR. Thus, the RT-LAMP assay established in this study is quick, reliable, and cost-effective for the accurate identification of BBWV-2 and PStV. It will facilitate the screening of patchouli planting materials.  Further, it may reduce the risk of virus spread and could be helpful in phytosanitary programs.


Assuntos
Fabavirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Pogostemon , Potyvirus , Transcrição Reversa
4.
Microbiol Spectr ; 11(6): e0266323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823658

RESUMO

IMPORTANCE: Globally, viral diseases impair the growth and vigor of cultivated crops such as grains, leading to a significant reduction in quality, marketability, and competitiveness. As an island nation, Australia has a distinct advantage in using its border to prevent the introduction of damaging viruses, which threaten the continental agricultural sector. However, breeding programs in Australia rely on imported seeds as new sources of genetic diversity. As such, it is critical to remain vigilant in identifying new and emerging viral pathogens, by ensuring the availability of accurate genomic diagnostic tools at the grain biosecurity border. High-throughput sequencing offers game-changing opportunities in biosecurity routine testing. Genomic results are more accurate and informative compared to traditional molecular methods or biological indexing. The present work contributes to strengthening accurate phytosanitary screening, to safeguard the Australian grains industry, and expedite germplasm release to the end users.


Assuntos
Fabavirus , Vicia faba , Vicia faba/genética , Austrália , Fabavirus/genética , Análise de Sequência de RNA
5.
Virology ; 588: 109891, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826911

RESUMO

Trichosanthes kirilowii has been mainly grown for use in traditional Chinese medicine. In this study, cucurbit mild mosaic virus (CuMMV) belonging to the genus Fabavirus was identified from T. kirilowii plants. CuMMV possesses a segmented, bipartite linear single-stranded RNA genome composed of RNA1 and RNA2. Sequence analysis showed that each genomic segment shares the highest sequence similarity with those of CuMMV isolated from pumpkin. A full-length infectious cDNA clone of CuMMV was further constructed and was found to induce typical symptoms in T. kirilowii, Cucumis sativus, C. melo, Citrullus lanatus, and Cucurbita pepo. The sap inoculum derived from the infectious cDNA clone of CuMMV could be mechanically transmitted and reproduce similar symptoms in the tested plants. This is the first report on the construction of a biologically active, full-length infectious cDNA clone of CuMMV, which will provide a useful tool in understanding CuMMV-encoded proteins and plant-CuMMV interactions.


Assuntos
Cucumis sativus , Fabavirus , Vírus do Mosaico , Trichosanthes , Trichosanthes/genética , DNA Complementar/genética , Fabavirus/genética , Cucumis sativus/genética , Plantas , Vírus do Mosaico/genética
6.
Arch Virol ; 168(2): 77, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725755

RESUMO

The complete nucleotide sequence of a novel gondre (Cirsium setidens)-infecting virus, provisionally named "cirsium virus A" (CiVA), was determined by high-throughput and Sanger sequencing, revealing a genome organization typical of fabaviruses. RNA1 and RNA2 are 5,828 and 3,478 nucleotides long, excluding the 3'-terminal poly(A) tails, each containing a single open reading frame. The highest sequence identity values for the CiVA coat protein and proteinase-polymerase, compared with known fabavirus sequences, were 59.09% and 69.68%, respectively, falling below the current thresholds for Fabavirus species demarcation. Our findings support classifying CiVA as a novel putative member of the genus Fabavirus, subfamily Comovirinae, family Secoviridae.


Assuntos
Cirsium , Fabavirus , Cirsium/genética , RNA Viral/genética , Genoma Viral , Proteínas do Capsídeo/genética , Filogenia , Fases de Leitura Aberta , Doenças das Plantas
7.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834661

RESUMO

Grapevine fabavirus (GFabV) is a novel member of the Fabavirus genus associated with chlorotic mottling and deformation symptoms in grapevines. To gain insights into the interaction between GFabV and grapevines, V. vinifera cv. 'Summer Black' infected with GFabV was investigated under field conditions through physiological, agronomic, and multi-omics approaches. GFabV induced significant symptoms on 'Summer Black', and caused a moderate decrease in physiological efficiency. In GFabV-infected plants, alterations in carbohydrate- and photosynthesis-related genes might trigger some defense responses. In addition, secondary metabolism involved in plant defense was progressively induced by GFabV. Jasmonic acid and ethylene signaling were down-regulated in GFabV-infected leaves and berries along with the expression of proteins related to LRR and protein kinases, suggesting that GFabV can block the defense in healthy leaves and berries. Furthermore, this study provided biomarkers for early monitoring of GFabV infection in grapevines, and contributed to a better understanding of the complex grapevine-virus interaction.


Assuntos
Fabavirus , Vitis , Transcriptoma , Vitis/genética , Fotossíntese , Metaboloma , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas
8.
Virus Res ; 304: 198533, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384805

RESUMO

Broad bean wilt virus 2 (BBWV2) is an evolutionarily successful RNA virus with an extensive host range and worldwide distribution that causes severe damage to crops. While numerous BBWV2 isolates from various plant species have been identified and their genome sequences determined, little information is available on the virulence and symptomatic characteristics corresponding to the genomic sequences. In this study, we provide integrated information on the molecular and pathogenic characteristics of three genetically distant BBWV2 isolates: BBWV2-PC, -LS2, and P3 obtained from Gentiana scabra, Leonurus sibiricus, and Pisum sativum, respectively. Phylogenetic and diversity analyses of the BBWV2 population included 42 isolates from various host species and revealed that RNA2 has higher genetic plasticity than RNA1 and may have evolved under host-imposed constraints. In addition, we generated an infectious cDNA clone of BBWV2-PC RNA2 (pBBWV2-PC-R2). Pseudo-recombination analysis of pBBWV2-PC-R2 further demonstrated that RNA2 determines the pathogenic characteristics of the PC isolate.


Assuntos
Fabavirus , Filogenia , RNA Viral/genética
9.
Viruses ; 13(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525612

RESUMO

Broad bean wilt virus 2 (BBWV-2), which belongs to the genus Fabavirus of the family Secoviridae, is an important pathogen that causes damage to broad bean, pepper, yam, spinach and other economically important ornamental and horticultural crops worldwide. Previously, only limited reports have shown the genetic variation of BBWV2. Meanwhile, the detailed evolutionary changes, synonymous codon usage bias and host adaptation of this virus are largely unclear. Here, we performed comprehensive analyses of the phylodynamics, reassortment, composition bias and codon usage pattern of BBWV2 using forty-two complete genome sequences of BBWV-2 isolates together with two other full-length RNA1 sequences and six full-length RNA2 sequences. Both recombination and reassortment had a significant influence on the genomic evolution of BBWV2. Through phylogenetic analysis we detected three and four lineages based on the ORF1 and ORF2 nonrecombinant sequences, respectively. The evolutionary rates of the two BBWV2 ORF coding sequences were 8.895 × 10-4 and 4.560 × 10-4 subs/site/year, respectively. We found a relatively conserved and stable genomic composition with a lower codon usage choice in the two BBWV2 protein coding sequences. ENC-plot and neutrality plot analyses showed that natural selection is the key factor shaping the codon usage pattern of BBWV2. Strong correlations between BBWV2 and broad bean and pepper were observed from similarity index (SiD), codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analyses. Our study is the first to evaluate the phylodynamics, codon usage patterns and adaptive evolution of a fabavirus, and our results may be useful for the understanding of the origin of this virus.


Assuntos
Uso do Códon , Fabavirus/genética , Genoma Viral , Plantas/virologia , Adaptação Fisiológica , Códon , Evolução Molecular , Fabavirus/fisiologia , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Fenômenos Fisiológicos Vegetais , Recombinação Genética , Seleção Genética
10.
Mol Plant Pathol ; 21(11): 1421-1435, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32936537

RESUMO

Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) is a bipartite, single-stranded positive-sense RNA virus infecting many horticultural and ornamental crops worldwide. RNA1 encodes proteins involved in viral replication whereas RNA2 encodes two coat proteins (the large and small coat proteins) and two putative movement proteins (MPs) of different sizes with overlapping C-terminal regions. In this work, we determined the role played by the small putative BBWV-1 MP (VP37) on virus pathogenicity, host specificity, and suppression of post-transcriptional gene silencing (PTGS). We engineered a BBWV-1 35S-driven full-length cDNA infectious clone corresponding to BBWV-1 RNA1 and RNA2 (pBBWV1-Wt) and generated a mutant knocking out VP37 (pBBWV1-G492C). Agroinfiltration assays showed that pBBWV1-Wt, as the original BBWV-1 isolate, infected broad bean, tomato, pepper, and Nicotiana benthamiana, whereas pBBWV1-G492C did not infect pepper and tomato systemically. Also, pBBWV1-G492C induced milder symptoms in broad bean and N. benthamiana than pBBWV1-Wt. Differential retrotranscription and amplification of the (+) and (-) strands showed that pBBWV1-G492C replicated in the agroinfiltrated leaves of pepper but not in tomato. All this suggests that VP37 is a determinant of pathogenicity and host specificity. Transient expression of VP37 through a potato virus X (PVX) vector enhanced PVX symptoms and induced systemic necrosis associated with programmed cell death in N. benthamiana plants. Finally, VP37 was identified as a viral suppressor of RNA silencing by transient expression in N. benthamiana 16c plants and movement complementation of a viral construct based on turnip crinkle virus (pTCV-GFP).


Assuntos
Fabavirus/patogenicidade , Especificidade de Hospedeiro/genética , Doenças das Plantas/virologia , Interferência de RNA , Vicia faba/virologia , Proteínas Virais/metabolismo , Capsicum/virologia , Fabavirus/genética , Expressão Gênica , Solanum lycopersicum/virologia , RNA Viral/genética , Proteínas Virais/genética , Virulência
11.
Arch Virol ; 165(9): 2073-2078, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621153

RESUMO

Complete RNA1 and RNA2 sequences of two and nearly complete genome sequences of six new variants of grapevine fabavirus found in Japan were compared to those of previously reported variants. Negative selection pressure was suggested, and no recombination events were detected in either RNA1 or RNA2. The first 18 nucleotides in both RNAs were predicted to form a stem-loop structure. The variants could be genetically divided into four groups based on RNA1 and two based on RNA2. A broad-spectrum reverse transcription polymerase chain reaction assay using a primer pair designed based on an RNA2 consensus sequence was able to detect all of the known variants.


Assuntos
Fabavirus/isolamento & purificação , Variação Genética , Doenças das Plantas/virologia , Vitis/virologia , Fabavirus/classificação , Fabavirus/genética , Genoma Viral , Filogenia , RNA Viral/genética
12.
Viruses ; 11(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970658

RESUMO

As an invasive weed, Mikaniamicrantha Kunth has caused serious damage to natural forest ecosystems in South China in recent years. Mikania micrantha wilt virus (MMWV), an isolate of the Gentian mosaic virus (GeMV), is transmitted by Myzuspersicae (Sulzer) in a non-persistent manner and can effectively inhibit the growth of M. micrantha. To explore the MMWV-M. micrantha-M. persicae interaction and its impact on the invasion of M. micrantha, volatile compounds (VOCs) emitted from healthy, mock-inoculated, and MMWV-infected plants were collected, and effects on host preference of the apterous and alate aphids were assessed with Y-shaped olfactometers. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that MMWV infection changed the VOC profiles, rendering plants more attractive to aphids. Clip-cages were used to document the population growth rate of M.persicae fed on healthy, mock-inoculated, or MMWV-infected plants. Compared to those reared on healthy plants, the population growth of M. persicae drastically decreased on the MMWV-infected plants. Plant host choice tests based on visual and contact cues were also conducted using alate M.persicae. Interestingly, the initial attractiveness of MMWV-infected plants diminished, and more alate M. persicae moved to healthy plants. Taken together, MMWV appeared to be able to manipulate its plant host to first attract insect vectors to infected plants but then repel viruliferous vectors to promote its own dispersal. Its potential application for invasive weed management is discussed.


Assuntos
Afídeos/fisiologia , Fabavirus/crescimento & desenvolvimento , Comportamento Alimentar/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro/efeitos dos fármacos , Mikania/virologia , Feromônios/metabolismo , Animais , Afídeos/efeitos dos fármacos , China , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Doenças das Plantas/virologia , Compostos Orgânicos Voláteis/metabolismo
13.
Viruses ; 10(4)2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670059

RESUMO

During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF). Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species.


Assuntos
Fabavirus/genética , Variação Genética , Doenças das Plantas/virologia , Prunus/virologia , Perfilação da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala
14.
Virus Res ; 242: 141-145, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970056

RESUMO

Broad bean wilt virus 2 (BBWV2, genus Fabavirus, family Secoviridae) has a wide host range and infects many economically important crops. Various isolates of BBWV2 have been identified from diverse host plants, and their molecular and biological characteristics have been investigated. In our previous study, we demonstrated that BBWV2 RNA2 contains a symptom determinant(s) capable of enhancing symptom severity by utilizing infectious full-length cDNA clones of two distinct strains of BBWV2, pBBWV2-PAP1 (a severe strain) and pBBWV2-RP1 (a mild strain). In the present study, to identify the symptom determinant(s) of BBWV2, we exploited disease responses of pBBWV2-PAP1- and pBBWV2-RP1-derived chimeric viruses and amino acid substitution mutant viruses in Nicotiana benthamiana and pepper (Capsicum annuum Quarri) and demonstrated that the movement protein (MP) encoded in BBWV RNA2 is the determinant of disease symptom severity in both plants. A single amino acid substitution in the MP was sufficient for changing symptom severity of BBWV2. Our finding provides a role for the MP as a symptom determinant in BBWV2 and increases the understanding of the basis of molecular interactions between host plants and BBWV2.


Assuntos
Capsicum/virologia , Fabavirus/patogenicidade , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Fatores de Virulência/metabolismo , Mutação , Recombinação Genética , Genética Reversa , /virologia
15.
Sci Rep ; 7(1): 11329, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900201

RESUMO

A disease causing smaller and cracked fruit affects peach [Prunus persica (L.) Batsch], resulting in significant decreases in yield and quality. In this study, peach tree leaves showing typical symptoms were subjected to deep sequencing of small RNAs for a complete survey of presumed causal viral pathogens. The results revealed two known viroids (Hop stunt viroid and Peach latent mosaic viroid), two known viruses (Apple chlorotic leaf spot trichovirus and Plum bark necrosis stem pitting-associated virus) and a novel virus provisionally named Peach leaf pitting-associated virus (PLPaV). Phylogenetic analysis based on RNA-dependent RNA polymerase placed PLPaV into a separate cluster under the genus Fabavirus in the family Secoviridae. The genome consists of two positive-sense single-stranded RNAs, i.e., RNA1 [6,357 nt, with a 48-nt poly(A) tail] and RNA2 [3,862 nt, with a 25-nt poly(A) containing two cytosines]. Biological tests of GF305 peach indicator seedlings indicated a leaf-pitting symptom rather than the smaller and cracked fruit symptoms related to virus and viroid infection. To our knowledge, this is the first report of a fabavirus infecting peach. PLPaV presents several new molecular and biological features that are absent in other fabaviruses, contributing to an overall better understanding of fabaviruses.


Assuntos
Fabavirus/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Prunus persica/virologia , Sequência de Bases , Fabavirus/classificação , Genômica/métodos , Especificidade de Hospedeiro , Conformação de Ácido Nucleico , Fenótipo , Filogenia , Dobramento de RNA , RNA Viral/química , RNA Viral/genética
16.
Arch Virol ; 162(3): 811-816, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27815695

RESUMO

The genus Fabavirus currently consists of five species represented by viruses that infect a wide range of hosts but none reported from temperate climate fruit trees. A virus with genomic features resembling fabaviruses (tentatively named Prunus virus F, PrVF) was revealed by high throughput sequencing of extracts from a sweet cherry tree (Prunus avium). PrVF was subsequently shown to be graft transmissible and further identified in three other non-symptomatic Prunus spp. from different geographical locations. Two genetic variants of RNA1 and RNA2 coexisted in the same samples. RNA1 consisted of 6,165 and 6,163 nucleotides, and RNA2 consisted of 3,622 and 3,468 nucleotides.


Assuntos
Fabavirus/genética , Fabavirus/isolamento & purificação , Doenças das Plantas/virologia , Prunus avium/virologia , Fabavirus/classificação , Frutas/virologia , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
17.
Virus Res ; 217: 71-5, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26951858

RESUMO

Broad bean wilt virus 1 (BBWV-1), genus Fabavirus, has a genome composed of two single-stranded positive-sense RNAs of ∼5.8 (RNA1) and 3.4kb (RNA2). Full-length cDNA clones of both genomic RNAs (pBenR1 and pBenR2) from BBWV-1 isolate Ben were constructed under the control of the T7 promoter. In vitro derived capped transcripts were infectious in Nicotiana benthamiana, Chenopodium quinoa and Vicia faba plants. The biological activity of viral transcripts was not affected by extra bases at the 5'-terminus introduced during in vitro transcription. Virions derived from the infectious cDNA clones displayed similar viral infectivity and accumulation, as well as symptom induction as the wild-type BBWV-1 isolate.


Assuntos
DNA Complementar , DNA Viral , Fabavirus/patogenicidade , Fabavirus/genética , Doenças das Plantas/virologia , RNA Viral , Vicia faba/virologia , Vírion/genética , Vírion/patogenicidade
18.
Sci Rep ; 6: 21552, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26903400

RESUMO

The movement protein VP37 of broad bean wilt virus 2 (BBWV 2) forms tubules in the plasmodesmata (PD) for the transport of virions between cells. This paper reports a mutual association between the BBWV 2 VP37-tubule complex and PD at the cytological level as determined by transmission electron microscopy. The generation of VP37-tubules within different PD leads to a different occurrence frequency as well as different morphology lines of virus-like particles. In addition, the frequency of VP37-tubules was different between PD found at different cellular interfaces, as well as between single-lined PD and branched PD. VP37-tubule generation also induced structural alterations of PD as well as modifications to the cell wall (CW) in the vicinity of the PD. A structural comparison using three-dimensional (3D) electron tomography (ET), determined that desmotubule structures found in the center of normal PD were absent in PD containing VP37-tubules. Using gold labeling, modification of the CW by callose deposition and cellulose reduction was observable on PD containing VP37-tubule. These cytological observations provide evidence of a mutual association of MP-derived tubules and PD in a natural host, improving our fundamental understanding of interactions between viral MP and PD that result in intercellular movement of virus particles.


Assuntos
Chenopodium quinoa/virologia , Fabavirus/ultraestrutura , Folhas de Planta/virologia , Plasmodesmos/virologia , Vírion/ultraestrutura , Parede Celular/ultraestrutura , Parede Celular/virologia , Chenopodium quinoa/ultraestrutura , Fabavirus/metabolismo , Interações Hospedeiro-Patógeno , Microscopia Eletrônica de Transmissão , Folhas de Planta/ultraestrutura , Plasmodesmos/ultraestrutura , Transporte Proteico , Proteínas Virais/metabolismo , Vírion/metabolismo
19.
Virus Res ; 211: 25-8, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26428303

RESUMO

Broad bean wilt virus 2 (BBWV2), which belongs to the genus Fabavirus, is a destructive pathogen of many economically important horticultural and ornamental crops. In this study, we constructed infectious full-length cDNA clones of two distinct isolates of BBWV2 under control of the cauliflower mosaic virus 35S promoter. BBWV2-PAP1 isolated from paprika (Capsicum annuum var. gulosum) induces severe disease symptoms in various pepper varieties, whereas BBWV2-RP1 isolated from red pepper (Capsicum annuum L.) causes mild symptoms. Agrobacterium-mediated inoculation of the infectious cDNA clones of BBWV2-PAP1 and RP1 resulted in the same symptoms as the original virus isolates. The infectious cDNA clones of BBWV2-PAP1 and RP1 were used to examine the symptoms induced by pseudorecombinants between the two isolates to localize in which of the two genomic RNAs are the symptom severity determinants in BBWV2. The pseudorecombinant of RP1-RNA1 and PAP1-RNA2 induced severe symptoms, similar to those caused by the parental isolate PAP1, whereas the pseudorecombinant of PAP1-RNA1 and RP1-RNA2 induced mild symptoms, similar to those caused by the parental isolate RP1. Our results suggest that BBWV2 RNA2 contains a symptom determinant(s) capable of enhancing symptom severity.


Assuntos
Fabavirus/genética , Fabavirus/patogenicidade , Doenças das Plantas/virologia , RNA Viral/genética , Capsicum/virologia , Fabavirus/fisiologia , Proteínas Associadas a Pancreatite , RNA Viral/metabolismo , Virulência
20.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484686

RESUMO

Crotalidae Polyvalent Immune Fab (Ovine) (FabAV) antivenin is commonly recommended after pit viper snakebites. Because copperhead envenomations are usually self-limited, some physicians are reluctant to use this costly treatment routinely, while others follow a more liberal approach. We hypothesized that, in practice, only patients with evidence of significant (moderate or severe) copperhead envenomation [those with snakebite severity score (SSS) > 3] receive FabAV and examined a large cohort to determine the relationship between clinical findings and FabAV administration. Methods All data from patients evaluated for copperhead snakebite at a rural tertiary referral center from 5/2002 to 10/2013 were compiled. Demographics, transfer status, antivenin use, and clinical findings were collected; SSS was calculated. The relationships among FabAV use, clinical findings, and SSS were analyzed using t-test, chi-square, and Pearsons coefficient (p 0.05 was significant). Results During the study period, 318 patients were treated for copperhead snakebite; 44 (13.8 %) received antivenin. Median dose was four vials (range: 110; IQR: 4,6). There were no deaths. Most patients receiving FabAV (63.6 %) were admitted. With regard to demographics and symptoms, only the degree of swelling (moderate vs. none/mild; p 0.01) and bite location (hand/arm vs. leg: p 0.0001) were associated with FabAV use. A SSS > 3, indicating moderate or severe envenomation, was only very weakly correlated with antivenin use (r = 0.217;p 0.0001). The majority of patients with SSS > 3 (65.8 %) did not receive antivenin while most patients who did receive antivenin (70.5 %) had SSS 3 (indicating mild envenomation). Conclusions Considerable variation occurs in antivenin administration after copperhead snakebite. Use of FabAV appears poorly correlated with patients symptoms. This practice may expose patients to the risks of antivenin and increasing costs of medical care without improving outcomes. Guidelines used for treating other pit viper strikes, such as rattlesnake or cottonmouth snakebite may be too liberal for copperhead envenomations. Our data suggests that most patients with mild or moderate envenomation appear to do well independent of FabAV use. We suggest, for patients with copperhead snakebite, that consideration be given to withholding FabAV for those without clinical evidence of severe envenomation until prospective randomized data are available.


Assuntos
Animais , Antivenenos/análise , Antivenenos/uso terapêutico , Mordeduras de Serpentes/reabilitação , Fabavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...